Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 243
Filter
1.
J Clin Invest ; 133(20)2023 10 16.
Article in English | MEDLINE | ID: mdl-37651195

ABSTRACT

Endothelial phospholipase Cγ (PLCγ) is essential for vascular development; however, its role in healthy, mature, or pathological vessels is unexplored. Here, we show that PLCγ was prominently expressed in vessels of several human cancer forms, notably in renal cell carcinoma (RCC). High PLCγ expression in clear cell RCC correlated with angiogenic activity and poor prognosis, while low expression correlated with immune cell activation. PLCγ was induced downstream of vascular endothelial growth factor receptor 2 (VEGFR2) phosphosite Y1173 (pY1173). Heterozygous Vegfr2Y1173F/+ mice or mice lacking endothelial PLCγ (Plcg1iECKO) exhibited a stabilized endothelial barrier and diminished vascular leakage. Barrier stabilization was accompanied by decreased expression of immunosuppressive cytokines, reduced infiltration of B cells, helper T cells and regulatory T cells, and improved response to chemo- and immunotherapy. Mechanistically, pY1173/PLCγ signaling induced Ca2+/protein kinase C-dependent activation of endothelial nitric oxide synthase (eNOS), required for tyrosine nitration and activation of Src. Src-induced phosphorylation of VE-cadherin at Y685 was accompanied by disintegration of endothelial junctions. This pY1173/PLCγ/eNOS/Src pathway was detected in both healthy and tumor vessels in Vegfr2Y1173F/+ mice, which displayed decreased activation of PLCγ and eNOS and suppressed vascular leakage. Thus, we believe that we have identified a clinically relevant endothelial PLCγ pathway downstream of VEGFR2 pY1173, which destabilizes the endothelial barrier and results in loss of antitumor immunity.


Subject(s)
Capillary Permeability , Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Mice , Capillary Permeability/genetics , Carcinoma, Renal Cell/immunology , Kidney Neoplasms/immunology , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Phospholipase C gamma/genetics , Phospholipase C gamma/metabolism , Phosphorylation , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , CSK Tyrosine-Protein Kinase/metabolism
2.
Environ Sci Technol ; 57(30): 10940-10950, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37467138

ABSTRACT

Urban stormwater runoff frequently contains the car tire transformation product 6PPD-quinone, which is highly toxic to juvenile and adult coho salmon (Onchorychus kisutch). However, it is currently unclear if embryonic stages are impacted. We addressed this by exposing developing coho salmon embryos starting at the eyed stage to three concentrations of 6PPD-quinone twice weekly until hatch. Impacts on survival and growth were assessed. Further, whole-transcriptome sequencing was performed on recently hatched alevin to address the potential mechanism of 6PPD-quinone-induced toxicity. Acute mortality was not elicited in developing coho salmon embryos at environmentally measured concentrations lethal to juveniles and adults, however, growth was inhibited. Immediately after hatching, coho salmon were sensitive to 6PPD-quinone mortality, implicating a large window of juvenile vulnerability prior to smoltification. Molecularly, 6PPD-quinone induced dose-dependent effects that implicated broad dysregulation of genomic pathways governing cell-cell contacts and endothelial permeability. These pathways are consistent with previous observations of macromolecule accumulation in the brains of coho salmon exposed to 6PPD-quinone, implicating blood-brain barrier disruption as a potential pathway for toxicity. Overall, our data suggests that developing coho salmon exposed to 6PPD-quinone are at risk for adverse health events upon hatching while indicating potential mechanism(s) of action for this highly toxic chemical.


Subject(s)
Benzoquinones , Blood-Brain Barrier , Capillary Permeability , Oncorhynchus kisutch , Phenylenediamines , Water Pollutants, Chemical , Animals , Capillary Permeability/drug effects , Capillary Permeability/genetics , Oncorhynchus kisutch/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Phenylenediamines/analysis , Phenylenediamines/metabolism , Phenylenediamines/toxicity , Benzoquinones/analysis , Benzoquinones/metabolism , Benzoquinones/toxicity , Transcription, Genetic/drug effects , Blood-Brain Barrier/drug effects , Biotransformation
3.
Cell Mol Life Sci ; 80(4): 91, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36928770

ABSTRACT

Excessive vascular endothelial growth factor-A (VEGF-A) signaling induces vascular leakage and angiogenesis in diseases. VEGFR2 trafficking to the cell surface, mediated by kinesin-3 family protein KIF13B, is essential to respond to VEGF-A when inducing angiogenesis. However, the precise mechanism of how KIF13B regulates VEGF-induced signaling and its effects on endothelial permeability is largely unknown. Here we show that KIF13B-mediated recycling of internalized VEGFR2 through Rab11-positive recycling vesicle regulates endothelial permeability. Phosphorylated VEGFR2 at the cell-cell junction was internalized and associated with KIF13B in Rab5-positive early endosomes. KIF13B mediated VEGFR2 recycling through Rab11-positive recycling vesicle. Inhibition of the function of KIF13B attenuated phosphorylation of VEGFR2 at Y951, SRC at Y416, and VE-cadherin at Y685, which are necessary for endothelial permeability. Failure of VEGFR2 trafficking to the cell surface induced accumulation and degradation of VEGFR2 in lysosomes. Furthermore, in the animal model of the blinding eye disease wet age-related macular degeneration (AMD), inhibition of KIF13B-mediated VEGFR2 trafficking also mitigated vascular leakage. Thus, the present results identify the fundamental role of VEGFR2 recycling to the cell surface in mediating vascular permeability, which suggests a promising strategy for mitigating vascular leakage associated with inflammatory diseases.


Subject(s)
Capillary Permeability , Kinesins , Vascular Endothelial Growth Factor Receptor-2 , Humans , Capillary Permeability/genetics , Capillary Permeability/physiology , Cell Membrane/metabolism , Kinesins/metabolism , Phosphorylation , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
4.
Theranostics ; 12(17): 7351-7370, 2022.
Article in English | MEDLINE | ID: mdl-36438499

ABSTRACT

Background: Metastasis is the leading cause of death in patients with breast cancer (BC). Primary tumors create a premetastatic niche (PMN) in secondary organs for subsequent metastases. Cancer-associated fibroblasts (CAFs) are a predominant stromal component in the tumor microenvironment and serve as a major contributor to tumor metastasis. However, the function and mechanism of primary CAFs in the premetastatic niche of secondary organs remain unclear in BC. Methods: We investigated the expression profiles of lncRNAs in pairs of CAFs and NFs derived from breast tumor tissues using lncRNA microarray. The expression levels of lncSNHG5, ZNF281, IGF2BP2, CCL2 and CCL5 were assessed by qRT-PCR; the protein levels of related genes (e.g., ZNF281, IGF2BP2, CCL2, and CCL5) were analyzed using western blotting and/or ELISA in primary and immortalized CAFs and clinical samples. Tubule formation and three-dimensional sprouting assays and tissue fluorescence staining were conducted to investigate angiogenesis. In vitro permeability assays, trans-endothelial invasion assays, in vivo permeability assays and tissue fluorescence staining were conducted to examine vascular permeability. The regulatory mechanism of lncSNHG5 was investigated by RNA sequencing, fluorescent in situ hybridization, cellular fractionation assay, mass spectrometry, RNA pull-down, RNA immunoprecipitation, gene-specific m6A assay, chromatin immunoprecipitation, dual luciferase reporter assay and actinomycin D treatment in CAFs and NFs. Results: LncSNHG5 was highly expressed in breast CAFs and played an essential role in premetastatic niche formation by promoting angiogenesis and vascular leakiness through regulation of ZNF281 in CAFs. lncSNHG5 enhanced ZNF281 mRNA stability by binding with the m6A reader IGF2BP2. Enhanced ZNF281 transcriptionally regulated CCL2 and CCL5 expression to activate P38 MAPK signaling in endothelial cells. High CCL2 and CCL5 expression was associated with tumor metastasis and poor prognosis in BC patients. The inhibitors RS102895, marasviroc and cenicriviroc inhibited angiogenesis and vascular permeability in the PMN by blocking the binding of CCL2/CCR2 and CCL5/CCR5. The lncSNHG5-ZNF281-CCL2/CCL5 signaling axis plays an essential role in inducing premetastatic niche formation to promote BC metastasis. Conclusions: Our work demonstrates that lncSNHG5 and its downstream signaling ZNF281-CCL2/CCL5 in CAFs play a crucial role in premetastatic niche formation in breast cancer and may serve as potential targets for the diagnosis and treatment of BC metastasis.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Capillary Permeability , Neovascularization, Pathologic , RNA, Long Noncoding , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Capillary Permeability/genetics , Capillary Permeability/physiology , Endothelial Cells/metabolism , In Situ Hybridization, Fluorescence , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Repressor Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , Tumor Microenvironment
5.
Arterioscler Thromb Vasc Biol ; 42(10): 1229-1241, 2022 10.
Article in English | MEDLINE | ID: mdl-35861069

ABSTRACT

BACKGROUND: Regulation of vascular permeability is critical to maintaining tissue metabolic homeostasis. VEGF (vascular endothelial growth factor) is a key stimulus of vascular permeability in acute and chronic diseases including ischemia reperfusion injury, sepsis, and cancer. Identification of novel regulators of vascular permeability would allow for the development of effective targeted therapeutics for patients with unmet medical need. METHODS: In vitro and in vivo models of VEGFA-induced vascular permeability, pathological permeability, quantitation of intracellular calcium release and cell entry, and phosphatidylinositol 4,5-bisphosphate levels were evaluated with and without modulation of PLC (phospholipase C) ß2. RESULTS: Global knock-out of PLCß2 in mice resulted in blockade of VEGFA-induced vascular permeability in vivo and transendothelial permeability in primary lung endothelial cells. Further work in an immortalized human microvascular cell line modulated with stable knockdown of PLCß2 recapitulated the observations in the mouse model and primary cell assays. Additionally, loss of PLCß2 limited both intracellular release and extracellular entry of calcium following VEGF stimulation as well as reduced basal and VEGFA-stimulated levels of phosphatidylinositol 4,5-bisphosphate compared to control cells. Finally, loss of PLCß2 in both a hyperoxia-induced lung permeability model and a cardiac ischemia:reperfusion model resulted in improved animal outcomes when compared with wild-type controls. CONCLUSIONS: The results implicate PLCß2 as a key positive regulator of VEGF-induced vascular permeability through regulation of both calcium flux and phosphatidylinositol 4,5-bisphosphate levels at the cellular level. Targeting of PLCß2 in a therapeutic setting may provide a novel approach to regulating vascular permeability in patients.


Subject(s)
Capillary Permeability , Phosphatidylinositol 4,5-Diphosphate , Phospholipase C beta , Respiratory Mucosa , Vascular Endothelial Growth Factor A , Animals , Calcium/metabolism , Capillary Permeability/genetics , Capillary Permeability/physiology , Endothelial Cells/metabolism , Humans , Lung/metabolism , Mice , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phospholipase C beta/genetics , Phospholipase C beta/metabolism , Phospholipase C beta/physiology , Respiratory Mucosa/metabolism
6.
Life Sci Alliance ; 5(1)2022 01.
Article in English | MEDLINE | ID: mdl-34670814

ABSTRACT

VEGF-A induces vascular leakage and angiogenesis via activating the cell surface localized receptor VEGF receptor 2 (VEGFR2). The amount of available VEGFR2 at the cell surface is however tightly regulated by trafficking of VEGFR2 by kinesin family 13 B (KIF13B), a plus-end kinesin motor, to the plasma membrane of endothelial cells (ECs). Competitive inhibition of interaction between VEGFR2 and KIF13B by a peptide kinesin-derived angiogenesis inhibitor (KAI) prevented pathological angiogenesis in models of cancer and eye disease associated with defective angiogenesis. Here, we show the protective effects of KAI in VEGF-A-induced vascular leakage and cancer metastasis. Using an EC-specific KIF13B knockout (Kif13b iECKO ) mouse model, we demonstrated the function of EC expressed KIF13B in mediating VEGF-A-induced vascular leakage, angiogenesis, tumor growth, and cancer metastasis. Thus, KIF13B-mediated trafficking of VEGFR2 to the endothelial surface has an essential role in pathological angiogenesis induced by VEGF-A, and is therefore a potential therapeutic target.


Subject(s)
Capillary Permeability , Kinesins/metabolism , Membrane Proteins/metabolism , Neoplasm Metastasis , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Capillary Permeability/genetics , Cell Membrane/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Kinesins/genetics , Membrane Proteins/genetics , Mice , Mice, Knockout , Neoplasm Metastasis/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Protein Transport
7.
Shock ; 57(2): 309-315, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34907119

ABSTRACT

ABSTRACT: ERG (ETS-related gene) is a member of the ETS (Erythroblast-transformation specific) family of transcription factors abundantly present in vascular endothelial cells. Recent studies demonstrate that ERG has important roles in blood vessel stability and angiogenesis. However, it is unclear how ERG is potentially involved in microvascular barrier functions and permeability. A wide variety of diseases and clinical conditions including trauma-hemorrhagic shock and burn injury are associated with microvascular dysfunctions, which causes excessive microvascular permeability, tissue edema and eventually, multiple organ dysfunction and death. The main purpose of this study was to determine the specific role of ERG in regulating microvascular permeability in human lung microvascular endothelial cells (HLMEC) and to evaluate if exogenous ERG will protect the barrier. The HLMECs were grown on Transwell inserts as monolayers and were transfected with ERG CRISPR/cas9 knockdown plasmid, ERG CRISPR activation plasmid, recombinant ERG protein or their respective controls. Recombinant vascular endothelial growth factor (VEGF) was used as an inducer of permeability for evaluating the effect of ERG activation on permeability. Changes in barrier integrity and permeability were studied using monolayer permeability assay and immunofluorescence of adherens junction proteins (VE-cadherin and ß-catenin) respectively. CRISPR/cas9-based ERG knockdown as well as VEGF treatment induced monolayer hyperpermeability, VE-cadherin, and ß-catenin junctional relocation and cytoskeletal F-actin stress fiber formation. CRISPR based ERG activation and recombinant ERG transfection attenuated VEGF-induced monolayer hyperpermeability. ERG activation preserved the adherens junctions and cytoskeleton. These results demonstrate that ERG is a potent regulator of barrier integrity and permeability in human lung microvascular endothelial cells and endogenously or exogenously enhancing ERG provides protection against barrier dysfunction and hyperpermeability.


Subject(s)
Adherens Junctions/genetics , Capillary Permeability/genetics , Endothelial Cells , Endothelium, Vascular/cytology , Microvessels , Transcriptional Activation , Cells, Cultured , Humans , Transcriptional Regulator ERG/genetics
8.
Dis Markers ; 2021: 9556513, 2021.
Article in English | MEDLINE | ID: mdl-34876932

ABSTRACT

OBJECTIVE: Inactivation of NLRP3 inflammasome plays a role in reducing the permeability of endothelial cells and improving blood-brain barrier (BBB) dysfunction following traumatic brain injury (TBI). However, the mechanism controlling NLRP3 inflammasome activation remains unclear. This study is aimed at defining the role of miR-29a-5p in NLRP3 inflammasome activation and permeability of endothelial cells under TBI. METHODS: The scratch injury model on brain bEnd.3 microvascular endothelial cells was used as in vitro TBI model cells. Effects of miR-29a mimics and inhibitors on TBI model cells were observed by examining their action on FITC, TEER, and protein contents of ZO-1 and occludin, and cell permeability-associated protein. Luciferase reporter assay evaluated miR-29a-5p targeting to NLRP3. ELISA examined of IL-1ß and IL-18 levels. miR-29a-5p mimic was injected into TBI mouse and its effect on BBB, indicated by Evans blue (EB) staining assay and cerebral water content, and NLRP3 activation was examined. RESULTS: miR-29a-3p and miR-29a-5p mimics decrease the concentration of FITC, and increase TEER and the protein contents of ZO-1 and occludin in TBI model cells. miR-29a-5p silencing disrupted the permeability of mouse bEnd.3 cells. miR-29a-5p targets to NLRP3 through the binding on its 3'UTR and negatively regulates its expression in TBI model cells. NLRP3 inhibition and miR-29a-5p silencing together caused significantly decreased FITC concentration and increased TEER value and release of IL-1ß and IL-18. miR-29a-5p mimic alleviated the BBB and cerebral water content and inactivates NLRP3 in the mouse TBI model. CONCLUSIONS: miR-29a-5p mimics protect TBI-induced increased endothelial cell permeability and BBB dysfunction via suppressing NLRP3 expression and activation.


Subject(s)
Brain Injuries, Traumatic/complications , Capillary Permeability/genetics , MicroRNAs/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Disease Models, Animal , Humans , Mice
9.
Cell Death Dis ; 12(9): 840, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34497265

ABSTRACT

Metastasis is the main cause of death in patients with advanced lung cancer. The exosomes released by cancer cells create tumor microenvironment, and then accelerate tumor metastasis. Cancer-derived exosomes are considered to be the main driving force for metastasis niche formation at foreign sites, but the mechanism in Non-small cell lung carcinoma (NSCLC) is unclear. In metastatic NSCLC patients, the expression level of miR-3157-3p in circulating exosomes was significantly higher than that of non-metastatic NSCLC patients. Here, we found that miR-3157-3p can be transferred from NSCLC cells to vascular endothelial cells through exosomes. Our work indicates that exosome miR-3157-3p is involved in the formation of pre-metastatic niche formation before tumor metastasis and may be used as a blood-based biomarker for NSCLC metastasis. Exosome miR-3157-3p has regulated the expression of VEGF/MMP2/MMP9 and occludin in endothelial cells by targeting TIMP/KLF2, thereby promoted angiogenesis and increased vascular permeability. In addition, exosome miR-3157-3p promoted the metastasis of NSCLC in vivo.


Subject(s)
Capillary Permeability/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Exosomes/metabolism , Kruppel-Like Transcription Factors/metabolism , Lung Neoplasms/genetics , MicroRNAs/metabolism , Neovascularization, Pathologic/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism , Base Sequence , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/blood supply , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Exosomes/ultrastructure , Gene Expression Regulation, Neoplastic , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Lung Neoplasms/blood supply , MicroRNAs/genetics , Neoplasm Metastasis , ROC Curve , Up-Regulation/genetics , Xenograft Model Antitumor Assays
10.
Adv Sci (Weinh) ; 8(20): e2101912, 2021 10.
Article in English | MEDLINE | ID: mdl-34396716

ABSTRACT

Blood exchanges between young and old partners demonstrate old blood has a detrimental effect on brain health of young animals. Previous studies primarily investigate soluble blood factors, such as transforming growth factor-beta, on the brain and the blood-brain barrier (BBB). However, the role of blood cellular components, particularly erythrocytes, has not been defined. Erythrocyte morphology and rigidity change as mammals age, altering their transport within the capillary bed. This impacts downstream biological events, such as the release of reactive oxygen species and hemoglobin, potentially compromising the BBB. Here, a micro electrical BBB (µE-BBB), with cocultured endothelial and astrocytic cells, and a built-in trans-endothelial electrical resistance (TEER) system is described to monitor the effect of capillary shear stress on erythrocytes derived from young and old mice and people and the subsequent effects of these cells on BBB integrity. This is monitored by the passage of fluorescein isothiocyanate-dextran and real-time profiling of TEER across the BBB after old and young erythrocyte exposure. Compared to young erythrocytes, old erythrocytes induce an increased permeability by 42% and diminished TEER by 2.9% of the µE-BBB. These results suggest that changes in circulating erythrocytes are a biomarker of aging in the context of BBB integrity.


Subject(s)
Aging/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Erythrocytes/metabolism , Aging/genetics , Aging/pathology , Animals , Astrocytes/metabolism , Astrocytes/pathology , Blood-Brain Barrier/pathology , Brain/pathology , Capillary Permeability/genetics , Cell Line , Cells, Cultured , Coculture Techniques , Dextrans , Endothelial Cells/metabolism , Endothelial Cells/pathology , Erythrocytes/pathology , Fluorescein-5-isothiocyanate/analogs & derivatives , Humans , Mice
11.
Neoplasia ; 23(8): 754-765, 2021 08.
Article in English | MEDLINE | ID: mdl-34229297

ABSTRACT

The abilities to invade surrounding tissues and metastasize to distant organs are the most outstanding features that distinguish malignant from benign tumors. However, the mechanisms preventing the invasion and metastasis of benign tumor cells remain unclear. By using our own rat distant metastasis model, gene expression of cells in primary tumors was compared with that in metastasized tumors. Among many distinct gene expressions, we have focused on chloride intracellular channel protein 2 (CLIC2), an ion channel protein of as-yet unknown function, which was predominantly expressed in the primary tumors. We created CLIC2 overexpressing rat glioma cell line and utilized benign human meningioma cells with naturally high CLIC2 expression. CLIC2 was expressed at higher levels in benign human brain tumors than in their malignant counterparts. Moreover, its high expression was associated with prolonged survival in the rat metastasis and brain tumor models as well as with progression-free survival in patients with brain tumors. CLIC2 was also correlated with the decreased blood vessel permeability likely by increased contents of cell adhesion molecules. We found that CLIC2 was secreted extracellularly, and bound to matrix metalloproteinase (MMP) 14. Furthermore, CLIC2 prevented the localization of MMP14 in the plasma membrane, and inhibited its enzymatic activity. Indeed, overexpressing CLIC2 and recombinant CLIC2 protein effectively suppressed malignant cell invasion, whereas CLIC2 knockdown reversed these effects. Thus, CLIC2 suppress invasion and metastasis of benign tumors at least partly by inhibiting MMP14 activity.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Chloride Channels/metabolism , Matrix Metalloproteinase 14/metabolism , Animals , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/etiology , Capillary Permeability/genetics , Cell Line, Tumor , Cell Movement , Chloride Channels/genetics , Enzyme Activation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Immunohistochemistry , Matrix Metalloproteinase 14/genetics , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Staging , Prognosis , Protein Binding , Rats , Tumor Microenvironment
12.
Sci Rep ; 11(1): 14146, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34238999

ABSTRACT

Septic shock is characterized by dysregulated vascular permeability. We hypothesized that the vascular permeability of endothelial cells (ECs) would be regulated by serotonin via serotonin-Rho-associated kinase (ROCK) signaling. We aimed to determine the impact of 5-hydroxyindoleacetic acid (5-HIAA) on septic shock as a novel biomarker. Plasma 5-HIAA levels and disease severity indices were obtained from 47 patients with sepsis. The association between 5-HIAA levels and severity indices was analyzed. Permeability upon serotonin stimulation was determined using human pulmonary microvascular ECs. 5-HIAA were significantly higher in septic shock patients than in patients without shock or healthy controls (p = 0.004). These elevated levels were correlated with severity indexes (SOFA score [p < 0.001], APACHE II [p < 0.001], and PaO2:FiO2 [p = 0.02]), and longitudinally associated with worse clinical outcomes (mechanical ventilation duration [p = 0.009] and ICU duration [p = 0.01]). In the experiment, serotonin increased the permeability of ECs, which was inhibited by the ROCK inhibitor (p < 0.001). Serotonin increases vascular permeability of ECs via ROCK signaling. This suggests a novel mechanism by which serotonin disrupts endothelial barriers via ROCK signaling and causes the pathogenesis of septic shock with a vascular leak. Serotonin serves as a novel biomarker of vascular permeability.


Subject(s)
Indoles/blood , Serotonin/metabolism , Shock, Septic/blood , rho-Associated Kinases/genetics , Aged , Aged, 80 and over , Biomarkers/blood , Capillary Permeability/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Humans , Male , Shock, Septic/metabolism , Shock, Septic/pathology
13.
Curr Opin Immunol ; 72: 94-106, 2021 10.
Article in English | MEDLINE | ID: mdl-33932709

ABSTRACT

Dysregulated mast cell-mediated inflammation and/or activation have been linked to a number of human diseases, including asthma, anaphylaxis, chronic spontaneous urticaria, and mast cell activation syndromes. As a major mast cell granule protein, tryptase is a biomarker commonly used in clinical practice to diagnose mast cell-associated disorders and -mediated reactions, but its mechanistic roles in disease pathogenesis remains incompletely understood. Here, we summarize recent advances in the understanding of human tryptase genetics and the effects that different genetic composition may have on the quaternary structure of tetrameric mature tryptases. We also discuss how these differences may impact clinical phenotypes including allergic inflammation, immediate hypersensitivity, and others seen in patients with mast cell-associated disorders. With the increased application of next-generation sequencing, we foresee that human genetic approaches will be a major focus of understanding human tryptase functions in various human mast cell disorders and in new therapeutic development.


Subject(s)
Disease Susceptibility/immunology , Hypersensitivity/etiology , Hypersensitivity/metabolism , Inflammation/etiology , Inflammation/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Tryptases/metabolism , Alleles , Animals , Capillary Permeability/genetics , Capillary Permeability/immunology , Enzyme Activation , Gene Expression Regulation , Genetic Predisposition to Disease , Genotype , Humans , Hypersensitivity/diagnosis , Hypersensitivity, Immediate/diagnosis , Hypersensitivity, Immediate/etiology , Hypersensitivity, Immediate/metabolism , Inflammation/diagnosis , Isoenzymes , Mutation , Phenotype , Structure-Activity Relationship , Substrate Specificity , Tryptases/genetics
14.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804258

ABSTRACT

The endothelial glycocalyx, the gel layer covering the endothelium, is composed of glycosaminoglycans, proteoglycans, and adsorbed plasma proteins. This structure modulates vessels' mechanotransduction, vascular permeability, and leukocyte adhesion. Thus, it regulates several physiological and pathological events. In the present review, we described the mechanisms that disturb glycocalyx stability such as reactive oxygen species, matrix metalloproteinases, and heparanase. We then focused our attention on the role of glycocalyx degradation in the induction of profibrotic events and on the possible pharmacological strategies to preserve this delicate structure.


Subject(s)
Endothelium/chemistry , Fibrosis/genetics , Glycocalyx/chemistry , Mechanotransduction, Cellular/genetics , Blood Proteins/chemistry , Blood Proteins/genetics , Capillary Permeability/genetics , Endothelium/ultrastructure , Fibrosis/pathology , Glucuronidase/adverse effects , Glycocalyx/genetics , Glycocalyx/ultrastructure , Glycosaminoglycans/chemistry , Glycosaminoglycans/genetics , Humans , Matrix Metalloproteinases/adverse effects , Proteoglycans/chemistry , Proteoglycans/genetics , Reactive Oxygen Species/adverse effects
15.
Med Sci Monit ; 27: e928676, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33621218

ABSTRACT

BACKGROUND Different responses to identical trauma may be related to the genetic background of individuals, but the molecular mechanism is unclear. In this study we investigated the heterogeneity of trauma in mice and the potential biological explanations for the differences. MATERIAL AND METHODS Compared with other organs, the pathological response of the lung after injury is the earliest and most serious. We used C57BL/6 and BALB/C mice to explore the genetic background of different responses to trauma in the lung. We measured mortality rate, pulmonary microvascular permeability, and Cxcl15 gene expression in BALB/C and C57BL/6 mice before and after blast-wave injury. Microvascular permeability was measured using a fluorescent tracer, and Cxcl15 gene expression level and expression distribution were measured using fluorogenic probe quantitative polymerase chain reaction and northern blot. RESULTS C57BL/6 mice showed lower mortality rates and pulmonary microvascular permeability than BALB/C mice after blast-wave injury; there was no significant difference in the permeability before blast-wave injury. The Cxcl15 gene was expressed specifically in the lung tissue of mice. The level of Cxcl15 expression in BALB/C mice was higher than in C57BL/6 mice before and after injury, and the variation trend of Cxcl15 expression level after injury was significantly different between BALB/C and C57BL/6 mice. CONCLUSIONS Our results indicated that BALB/C and C57BL/6 mice had significant heterogeneity in posttraumatic response in terms of mortality and degree of lung damage. The differences in genetic factors such as Cxcl15 may have played a role in this heterogeneity.


Subject(s)
Lung Injury/physiopathology , Lung/pathology , Wounds and Injuries/genetics , Animals , Blast Injuries/genetics , Blast Injuries/physiopathology , Capillary Permeability/genetics , Capillary Permeability/physiology , Chemokines, CXC/genetics , Chemokines, CXC/metabolism , Gene Expression/genetics , Lung/metabolism , Lung Injury/genetics , Lung Injury/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
16.
Eur Respir J ; 57(1)2021 01.
Article in English | MEDLINE | ID: mdl-32764118

ABSTRACT

Epidemiological data from the SARS-CoV-2 outbreak suggest sex differences in mortality and vulnerability; however, sex-dependent incidence of acute respiratory distress syndrome (ARDS) remains controversial and the sex-dependent mechanisms of endothelial barrier regulation are unknown. In premenopausal women, increased signalling of angiotensin (Ang)(1-7) via the Mas receptor has been linked to lower cardiovascular risk. Since stimulation of the Ang(1-7)/Mas axis protects the endothelial barrier in acute lung injury (ALI), we hypothesised that increased Ang(1-7)/Mas signalling may protect females over males in ALI/ARDS.Clinical data were collected from Charité inpatients (Berlin) and sex differences in ALI were assessed in wild-type (WT) and Mas-receptor deficient (Mas-/- ) mice. Endothelial permeability was assessed as weight change in isolated lungs and as transendothelial electrical resistance (TEER) in vitroIn 734 090 Charité inpatients (2005-2016), ARDS had a higher incidence in men as compared to women. In murine ALI, male WT mice had more lung oedema, protein leaks and histological evidence of injury than female WT mice. Lung weight change in response to platelet-activating factor (PAF) was more pronounced in male WT and female Mas-/- mice than in female WT mice, whereas Mas-receptor expression was higher in female WT lungs. Ovariectomy attenuated protection in female WT mice and reduced Mas-receptor expression. Oestrogen increased Mas-receptor expression and attenuated endothelial leakage in response to thrombin in vitro This effect was alleviated by Mas-receptor blockade.Improved lung endothelial barrier function protects female mice from ALI-induced lung oedema. This effect is partially mediated via enhanced Ang(1-7)/Mas signalling as a result of oestrogen-dependent Mas expression.


Subject(s)
Acute Lung Injury/genetics , Angiotensin I/metabolism , COVID-19/epidemiology , Capillary Permeability/genetics , Endothelium, Vascular/metabolism , Estrogens/metabolism , Lung/metabolism , Peptide Fragments/metabolism , Proto-Oncogene Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Respiratory Distress Syndrome/epidemiology , Acute Lung Injury/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Angiotensin I/pharmacology , Angiotensin-Converting Enzyme 2 , Animals , Capillary Permeability/drug effects , Child , Electric Impedance , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Estradiol/pharmacology , Female , Humans , In Vitro Techniques , Lung/drug effects , Male , Mice , Mice, Knockout , Middle Aged , Ovariectomy , Peptide Fragments/pharmacology , Platelet Activating Factor/pharmacology , Proto-Oncogene Mas , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , SARS-CoV-2 , Sex Distribution , Sex Factors , Up-Regulation , Young Adult
17.
Am J Physiol Endocrinol Metab ; 320(2): E179-E190, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33284092

ABSTRACT

Adiponectin (APN) is a circulating protein specifically produced by adipocytes. Native APN specifically binds to T-cadherin, a glycosylphosphatidylinositol-anchored protein, mediating the exosome-stimulating effects of APN in endothelial, muscle, and mesenchymal stem cells. It was previously reported that APN has beneficial effects on kidney diseases, but the role of T-cadherin has not been clarified yet. Here, our immunofluorescence study indicated the existence of both T-cadherin and APN protein in pericytes, subsets of tissue-resident mesenchymal stem/progenitor cells positive for platelet-derived growth factor receptor ß (PDGFRß), surrounding peritubular capillaries. In an acute renal ischemia-reperfusion (I/R) model, T-cadherin-knockout (Tcad-KO) mice, similar to APN-KO mice, exhibited the more progressive phenotype of renal tubular damage and increased vascular permeability than wild-type mice. In addition, in response to I/R-injury, the renal PDGFRß-positive cell area increased in wild-type mice, but opposingly decreased in both Tcad-KO and APN-KO mice, suggesting severe pericyte loss. Mouse primary pericytes also expressed T-cadherin. APN promoted exosome secretion in a T-cadherin-dependent manner. Such exosome production from pericytes may play an important role in maintaining the capillary network and APN-mediated inhibition of renal tubular injury. In summary, our study suggested that APN protected the kidney in an acute renal injury model by binding to T-cadherin.NEW & NOTEWORTHY In the kidney, T-cadherin-associated adiponectin protein existed on peritubular capillary pericytes. In an acute renal ischemia-reperfusion model, deficiency of adiponectin or T-cadherin exhibited the more progressive phenotype of renal tubular damage and increased vascular permeability, accompanied by severe pericyte loss. In vitro, adiponectin promoted exosome secretion from mouse primary pericytes in a T-cadherin-dependent manner. Adiponectin plays an important role in maintaining the capillary network and amelioration of renal tubular injury by binding to T-cadherin.


Subject(s)
Adiponectin/genetics , Cadherins/genetics , Capillary Permeability/genetics , Kidney Diseases/genetics , Reperfusion Injury/genetics , Animals , Cells, Cultured , Kidney Diseases/etiology , Kidney Diseases/pathology , Kidney Tubules/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Reperfusion Injury/complications , Reperfusion Injury/pathology , Severity of Illness Index
18.
Oxid Med Cell Longev ; 2020: 1936580, 2020.
Article in English | MEDLINE | ID: mdl-33381262

ABSTRACT

Heat shock factor 1 (HSF1) is a transcription factor involved in the heat shock response and other biological processes. We have unveiled here an important role of HSF1 in acute lung injury (ALI). HSF1 knockout mice were used as a model of lipopolysaccharide- (LPS-) induced ALI. Lung damage was aggravated, and macrophage infiltration increased significantly in the bronchoalveolar lavage fluid (BALF) and lung tissue of HSF-/- mice compared with the damage observed in HSF1+/+ mice. Upon LPS stimulation, HSF-/- mice showed higher levels of monocyte chemoattractant protein-1 (MCP-1) in the serum, BALF, and lung tissue and increased the expression of MCP-1 and chemokine (C-C motif) receptor 2 (CCR2) on the surface of macrophages compared with those in HSF1+/+. Electrophoretic mobility shift assays (EMSA) and dual luciferase reporter assays revealed that HSF1 could directly bind to heat shock elements (HSE) in the promoter regions of MCP-1 and its receptor CCR2, thereby inhibiting the expression of both genes. We concluded that HSF1 attenuated LPS-induced ALI in mice by directly suppressing the transcription of MCP-1/CCR2, which in turn reduced macrophage infiltration.


Subject(s)
Acute Lung Injury/genetics , Heat Shock Transcription Factors/physiology , Macrophages/physiology , Acute Lung Injury/chemically induced , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Animals , Capillary Permeability/genetics , Cell Movement/genetics , Female , Lipopolysaccharides , Lung/immunology , Lung/metabolism , Lung/pathology , Macrophages/pathology , Male , Mice , Mice, Knockout , RAW 264.7 Cells
19.
Mol Med ; 26(1): 108, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33187467

ABSTRACT

BACKGROUND: Acute lung injury (ALI), which is induced by numerous pathogenic factors, especially sepsis, can generate alveolar damage, pulmonary edema and vascular hyper-permeability ultimately leading to severe hypoxemia. Fibroblast growth factor-2 (FGF2) is an important member of the FGF family associated with endothelial cell migration and proliferation, and injury repairment. Here, we conducted this study aiming to evaluate the therapeutic effect of FGF2 in sepsis-induced ALI. METHODS: Recombinant FGF2 was abdominally injected into septic mice induced by cecal ligation and puncture (CLP), and then the inflammatory factors of lung tissue, vascular permeability and lung injury-related indicators based on protein levels and gene expression were detected. In vitro, human pulmonary microvascular endothelial cells (HPMEC) and mouse peritoneal macrophages (PMs) were challenged by lipopolysaccharides (LPS) with or without FGF2 administration in different groups, and then changes in inflammation indicators and cell permeability ability were tested. RESULTS: The results revealed that FGF2 treatment reduced inflammation response, attenuated pulmonary capillary leakage, alleviated lung injury and improved survival in septic mice. The endothelial injury and macrophages inflammation induced by LPS were inhibited by FGF2 administration via AKT/P38/NF-κB signaling pathways. CONCLUSION: These findings indicated a therapeutic role of FGF2 in ALI through ameliorating capillary leakage and inflammation.


Subject(s)
Capillary Permeability/genetics , Fibroblast Growth Factor 2/genetics , Sepsis/etiology , Animals , Biomarkers , Cell Line , Cytokines/metabolism , Disease Models, Animal , Fibroblast Growth Factor 2/metabolism , Humans , Immunohistochemistry , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Lipopolysaccharides/adverse effects , Male , Mice , NF-kappa B/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Sepsis/metabolism , Sepsis/mortality , Sepsis/pathology , Signal Transduction/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
20.
PLoS Biol ; 18(11): e3000946, 2020 11.
Article in English | MEDLINE | ID: mdl-33253145

ABSTRACT

Inflammation of the central nervous system (CNS) induces endothelial blood-brain barrier (BBB) opening as well as the formation of a tight junction barrier between reactive astrocytes at the Glia Limitans. We hypothesized that the CNS parenchyma may acquire protection from the reactive astrocytic Glia Limitans not only during neuroinflammation but also when BBB integrity is compromised in the resting state. Previous studies found that astrocyte-derived Sonic hedgehog (SHH) stabilizes the BBB during CNS inflammatory disease, while endothelial-derived desert hedgehog (DHH) is expressed at the BBB under resting conditions. Here, we investigated the effects of endothelial Dhh on the integrity of the BBB and Glia Limitans. We first characterized DHH expression within endothelial cells at the BBB, then demonstrated that DHH is down-regulated during experimental autoimmune encephalomyelitis (EAE). Using a mouse model in which endothelial Dhh is inducibly deleted, we found that endothelial Dhh both opens the BBB via the modulation of forkhead box O1 (FoxO1) transcriptional activity and induces a tight junctional barrier at the Glia Limitans. We confirmed the relevance of this glial barrier system in human multiple sclerosis active lesions. These results provide evidence for the novel concept of "chronic neuroinflammatory tolerance" in which BBB opening in the resting state is sufficient to stimulate a protective barrier at the Glia Limitans that limits the severity of subsequent neuroinflammatory disease. In summary, genetic disruption of the BBB generates endothelial signals that drive the formation under resting conditions of a secondary barrier at the Glia Limitans with protective effects against subsequent CNS inflammation. The concept of a reciprocally regulated CNS double barrier system has implications for treatment strategies in both the acute and chronic phases of multiple sclerosis pathophysiology.


Subject(s)
Blood-Brain Barrier/physiology , Blood-Brain Barrier/physiopathology , Adherens Junctions/pathology , Adherens Junctions/physiology , Animals , Antigens, CD/genetics , Antigens, CD/physiology , Astrocytes/pathology , Astrocytes/physiology , Cadherins/genetics , Cadherins/physiology , Capillary Permeability/genetics , Capillary Permeability/physiology , Claudin-5/genetics , Claudin-5/physiology , Down-Regulation , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Endothelial Cells/pathology , Endothelial Cells/physiology , Female , Hedgehog Proteins/deficiency , Hedgehog Proteins/genetics , Hedgehog Proteins/physiology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Multiple Sclerosis/pathology , Multiple Sclerosis/physiopathology , Neuroglia/pathology , Neuroglia/physiology , Tight Junctions/pathology , Tight Junctions/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...